
Evolutionary algorithms

• Simple genetic algorithms

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck

Gray Coding

Aim: binary coding of integers such that integers
x and y for which |x-y|=1 only differ in one bit

Dec Gray Binary
 0 000 000
 1 001 001
 2 011 010
 3 010 011
 4 110 100
 5 111 101
 6 101 110
 7 100 111

Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0 1

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

 10 11 01 00
Codes hence:
000001 011 010 110 111 101 100

0
1

0
1

00
01

00
01
11
10

000
001
011
010

Gray Coding
Given a “normal” bit representation, how to calculate

the Gray code?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num

Gray Coding
Given a Gray code, how to calculate a “normal” bit

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code) iff the bit
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Gray coding does not avoid that integers far away

from each other can have similar codes
00000=0
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a one-
bit mutation to transform integer x into integer x+1 or
x-1.

Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)

Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)

Evolutionary Strategies
Main idea:

individuals consist of vectors of real numbers
(not binary)

Redefinitions of
selection
crossover
mutation

Operations executed in the order
crossover mutation selection→ →

ES: Selection
Not performed before mutation and crossover, but

after these operations
It is assumed mutation (& crossover) generate

λ > µ individuals (where µ is population size)
(typically λ ≈ 7µ)

Deterministically eliminate worst individuals from
children only: (µ,λ)-ES escapes from local →

optima more easily
parents and children: (µ+λ)-ES doesn't forget →

good solutions (“elitist selection”)

(Notational convention)

ES: Basic Mutation
An individual is a vector

Mutate each xi by sampling a change from a normal
distribution:
 where

“sampled from”

Simple modification:
mutation rate for each xi

Major question:
How to set or ?

ES: Basic Mutation
An algorithm for setting global :

 Count the number Gs of successful
mutations
 Compute the ratio of successful mutations

ps = Gs / G

 Update strategy parameters according to

until termination

σ i={
σ i/ c if ps> 0 .2

σ i c if ps< 0 .2

σ i if ps=0 .2

]0.1,8.0[∈c

Improved fitness

“1/5 rule”

MAIN IDEA: make search more efficient
by increasing mutation rate if this seems safe

Increase mutation
rate as it appears better
solutions are far away

Basic (1+1) ES
Common use of the 1/5 rule

ES Mutation:
Strategy Parameters
An individual is a vector

or
where the are the standard deviations

Mutate strategy parameter(s) first
Order is important!

If the resulting child has high fitness, it is assumed
that:
quality of phenotype is good
quality of strategy parameters that led to this

phenotype is good

ES Mutation:
Strategy Parameters
Mutation of one strategy parameter

ES Mutation:
Strategy Parameters
Here is the mutation rate

 bigger: faster but more imprecise
 smaller: slower but more imprecise

Recommendation for setting :

ES Mutation:
Strategy Parameters

One parameter for each
individual

2 dimensional genotype

5 individuals

Line indicates points with equal fitness

ES Mutation:
Strategy Parameters

One parameter for each
dimension

2 dimensional genotype

5 individuals

ES Mutation:
Strategy Parameters
Mutation of all strategy parameters

Sample from normal distribution,
the same for all parameters

Update for this specific parameter

ES Mutation:
Strategy Parameters

An individual is a vector

where encode angles

Also here mutation can
be defined

Mathematical details
skipped

ES Crossover /
Recombination
Application of operator creates one child (not two)
Is applied times to create an offspring population of size

 (on which then mutation and selection is applied)
Per offspring gene two parent genes are involved
Choices:

combination of two parent genes:
 average value of parents (intermediate recombination)
 value of one randomly selected parent (discrete recombination)

choice of parents:
 a different pair of parents for each gene (global recombination)
 the same pair of parents for all genes

ES Crossover /
Recombination
Default choice: discrete recombination on phenotype,

intermediate recombination on strategy parameters

GAs vs. ES
Genetic algorithms
Crossover is the main

operator
Uses also mutation

Encoding for problem
representation

Biased selection of the
parents

Algorithm parameters
often fixed

Selection Crossover → →
Mutation

Evolution strategies
Mutation is the main

operator
Uses also crossover

(recombination)
No encoding needed for

problem representation
Random selection of the

parents
Adaptive set of algorithm

parameters (strategy
parameters)

Crossover Mutation → →
Selection

Genetic Programming
Goal: to learn computer programs from examples (like in

machine learning and data mining)

Main idea:
represent (simple) computer programs in individuals of
arbitrary size

Redefinitions of
selection
crossover
mutation

Individuals are Program
Trees / Parse Trees
Representation of

Arithmetic formulas

Logical formulas

Computer programs

Representation of
Arithmetic Formula

Representation of
Logical Formula

Representation of
Computer Programs

Representation
Trees consisting of:

terminals (leaves)
 constants
 variables (inputs to the program/formula)

functions of fixed arity (internal nodes)

Considerations in
Function Selection
Closure: any function should be well-defined for all

arguments

Example: { *, / } is not closed as division is not well
defined if the second argument is 0 redefine /.→

Sufficiency: the function and terminal set should be
able to represent a desirable solution

Evolutionary Cycle
Fixed population size
Create a new population by randomly selecting an

operation to apply, each of which adds one or two
individuals into the new population, starting from
one or two fitness proportionally selected individuals:
reproduction (copying)
one of many crossover operations
one of many mutation operations

Initialization
Given is a maximum depth on trees Dmax

Full method:
 for each level < Dmax insert a node with function symbol

(recursively add children of appropriate types)
 for level Dmax insert a node with a terminal

Grow method:
 for each level < Dmax insert a node with either a terminal or a

function symbol (and recursively add children of appropriate types
to these nodes)

 for level Dmax insert a node with a terminal

Combined method: half of the population full, the other grown

Mutation
Operator name Description

Point mutation single node exchanged against random node
of same class

Permutation arguments of a node permuted

Hoist new individual generated from subtree

Expansion terminal exchanged against random subtree

Collapse subtree subtree exchanged against random terminal

Subtree mutation subtree exchanged against random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree
Mutation

Subtree Mutation

Crossover

Self-Crossover

Bloat
“Survival of the fattest”, i.e. the tree sizes in the

populations increase over time

Countermeasures:
simplification
penalty for large trees
hard constraints on the size of trees resulting from

operations

Editing Operator
An operation that simplifies expressions
Examples:

X AND X X→
X OR X X→
NOT(NOT(X)) X→
X + 0 X→
X . 1 X→
X . 0 0→
….

Example – Symbolic
Regression
Pythagorean Theorem

22 bac +=
Negnevitsky 2004

Underlying function:

Fitness cases:

Language elements: +, -, *, /, sqrt, a, b

Not (necessarily)
linear

Example – Symbolic Regression
Approximation of sin(x)
Given examples (x,sin(x)) with x in {0,1,...,9}
Find a good approximation of sin(x)

Example – Symbolic Regression
Approximation of sin(x)

GAs vs. GP
Genetic algorithms
Chromosomes represent

coded solutions
Fixed length

chromosomes
A small set of well-

defined genetic
operators

Conceptually simple

Genetic programming
Chromosomes represent

executable code
Variable length

chromosomes
More complex genetic

operators required
Conceptually complex

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Handling constraints
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	GAs vs. ES
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Example – Pythagorean Theorem
	Results
	Slide 58
	Slide 59
	GAs vs. GP

