Evolutionary algorithms

- Simple genetic algorithms
- Evolutionary Strategies

Genetic Programming

Gray Coding

- Aim: binary coding of integers such that integers x and y for which $|x-y|=1$ only differ in one bit

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Gray Coding

- Codes for $n=1$: (i.e., integers 0,1) $0 \quad 1$
- Codes for $n=2$: (i.e., integers $0,1,2,3$) Reflected entries for $n=0$: 10
Prefix old entries with o:
00 01
Prefix reflected entries with 1 :

$$
\underline{11} \quad \underline{10}
$$

Codes hence:
$\underline{0} 0 \quad \underline{0} 1110$

- Codes for $n=3$: (i.e., integers $0,1,2, \ldots, 7$)

Reflected entries for $n=2$:

		10	11	01	00
Codes hence:		1	1	1	1
$\underline{0} 00 \underline{0} 01$	$\underline{0} 11$	$\underline{0} 10$	$\underline{110}$	$\underline{111}$	$\underline{101}$
$\underline{100}$					

Gray Coding

- Given a "normal" bit representation, how to calculate the Gray code?

*"	5^{3}	
$0-0 \rightarrow 00$	$\rightarrow 00 \rightarrow 000$	000
$1-1 \rightarrow 01$	$-01 \rightarrow 001$	001
$\rightarrow 1 \rightarrow 11$	$\square 11 \rightarrow 011$	010
$\rightarrow 0 \rightarrow 10$	$\square 10 \rightarrow 010$	011
	$\rightarrow 10 \rightarrow 110$	100
	$\rightarrow 11 \rightarrow 111$	101
	$\rightarrow 01 \rightarrow 101$	110
	$\rightarrow 00 \rightarrow 100$	111

bitstring \rightarrow Gray
$10100 \rightarrow 11110$ $10101 \rightarrow 11111$ $10110 \rightarrow 11101$
$11001 \rightarrow 10101$

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

Gray Coding

- Source code in Python for calculating Gray code:

```
def binaryToGray(num):
    return (num >> 1) ^ num
```


Gray Coding

- Given a Gray code, how to calculate a "normal" bit representation?

к" ${ }^{\prime \prime}$	2^{3}	
$0-0 \rightarrow 00$	$\rightarrow 00 \rightarrow 000$	000
$1-1 \rightarrow 01$	$-01 \rightarrow 001$	001
$\rightarrow 1 \rightarrow 11$	$-11 \rightarrow 011$	010
$\rightarrow 0 \rightarrow 10$	$-10 \rightarrow 010$	011
	$\rightarrow 10 \rightarrow 110$	100
	$\rightarrow 11 \rightarrow 111$	101
	$\rightarrow 01 \rightarrow 101$	110
	$\longrightarrow 00 \rightarrow 100$	111

bitstring \rightarrow Gray
$10100 \rightarrow 11110$
$10101 \rightarrow 11111$
$10110 \rightarrow 11101$
$11001 \rightarrow 10101$

A bit flips in the "normal" code (as compared to the Gray code) iff the bit before it has value 1 in the "normal" code.

Gray Coding

- Gray coding does not avoid that integers far away from each other can have similar codes $00000=0$
$10000=31$
\rightarrow Mutation can still change numbers a lot
- Gray coding only ensures that there always is a onebit mutation to transform integer x into integer $x+1$ or $x-1$.

Constraints

- Examples:
- "A string of numbers should represent a permutation" $(1,2,3)$ is valid; $(1,1,3)$ is not
- "The sum of numbers should not be lower than a threshold"
- Possibility 1: fitness function modification
- setting fitness of unfeasible solutions to zero (search may be very inefficient due to unfeasible solutions)
- penalty function (negative terms for violated constraints)
- barrier function (already penalty if "close to" violation)

Constraints

- Possibility 2 (preferred method): special encoding
- GA searches always through allowed solutions
- smaller search space
- ad hoc method, may be difficult to find
- Example: permutations (see AI course)

Evolutionary Strategies

- Main idea: individuals consist of vectors of real numbers (not binary)
- Redefinitions of
- selection
- crossover
- mutation
- Operations executed in the order crossover \rightarrow mutation \rightarrow selection

ES: Selection

- Not performed before mutation and crossover, but after these operations
- It is assumed mutation (\& crossover) generate $\lambda>\mu$ individuals (where μ is population size) (typically $\lambda \approx 7 \mu$)
- Deterministically eliminate worst individuals from
- children only: $(\mu, \lambda)-\mathrm{FS} \rightarrow$ escapes from local optima more easily
(Notational convention)
- parents and children: $(\mu+\lambda)$-ES \rightarrow doesn't forget good solutions ("elitist selection")

ES: Basic Mutation

- An individual is a vector $\vec{h}=\left(x_{1}, \ldots, x_{n}\right)$
- Mutate each x_{i} by sampling a change from a normal distribution:

$$
x_{i} \leftarrow x_{i}+\Delta x_{i} \text { where } \Delta x_{i} \simeq N(0, \sigma)
$$

"sampled from"

Simple modification: mutation rate for each x_{i}

Major question:
How to set σ or σ_{i} ?

MAIN IDEA: make search more efficient

 by increasing mutation rate if this seems safe
ES: Basic Mutation

- An algorithm for setting global σ Improved fitness
- Count the number G_{s} of succéssful mutations
- Compute the ratio of successful mutations
$p_{s}=G_{s} / G$
- Update strategy parameters according to

$$
=\left\{\begin{array}{lll}
\sigma_{i} / c & \text { if } \quad p_{s}>0.2 & c \in[0.8,1.0]
\end{array}\right.
$$

$$
\sigma_{i}=\left\{\begin{array}{ccc}
\sigma_{i} c & \text { if } & p_{s}<0.2 \\
\sigma_{i} & \text { if } & p_{s}=0.2
\end{array}\right.
$$

rate as it appears better
until termination solutions are far "away " $1 / 5$ rule"

Basic (1+1) ES

- Common use of the $1 / 5$ rule

```
\(t:=0\);
initialize \(P(0):=\{\vec{x}(0)\} \in I, I=I R^{n}, \vec{x}=\left(x_{1}, \ldots, x_{n}\right)\);
evaluate \(P(0):\{f(\vec{x}(0))\}\)
while not terminate \((P(t))\) do
    mutate: \(\vec{x}^{\prime}(t):=m(\vec{x}(t))\)
        where \(x_{i}^{\prime}:=x_{i}+\sigma(t) \cdot N_{i}(0,1) \forall i \in\{1, \ldots, n\}\)
    evaluate: \(P^{\prime}(t):=\left\{\vec{x}^{\prime}(t)\right\}:\left\{f\left(\vec{x}^{\prime}(t)\right)\right\}\)
    select: \(P(t+1):=s_{(1+1)}\left(P(t) \cup P^{\prime}(t)\right)\);
    \(t:=t+1\);
    if \((t \bmod n=0)\) then
        \(\sigma(t):= \begin{cases}\sigma(t-n) / c & , \text { if } p_{s}>1 / 5 \\ \sigma(t-n) \cdot c & , \text { if } p_{s}<1 / 5 \\ \sigma(t-n) & , \text { if } p_{s}=1 / 5\end{cases}\)
        where \(p_{s}\) is the relative frequency of successful
                mutations, measured over intervals of,
                say, \(10 \cdot n\) trials;
        and \(0.817 \leq c \leq 1\);
    else
        \(\sigma(t):=\sigma(t-1) ;\)
    fi
od
```


ES Mutation:

Strategy Parameters

- An individual is a vector $\vec{h}=\left(x_{1}, \ldots, x_{n}, \sigma\right)$ or $\vec{h}=\left(x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, \sigma_{n}\right)$ where the σ_{i} are the standard deviations
- Mutate strategy parameter(s) first Order is important!
- If the resulting child has high fitness, it is assumed that:
- quality of phenotype is good
- quality of strategy parameters that led to this phenotype is good

ES Mutation:
 Strategy Parameters

- Mutation of one strategy parameter

Here the new $\sigma^{\text {c }}$ is used!

ES Mutation: Strategy Parameters

- Here τ_{0} is the mutation rate
- τ_{0} bigger: faster but more imprecise
- τ_{0} smaller: slower but more imprecise
- Recommendation for setting τ_{0} :

$$
\tau_{0}=\frac{1}{\sqrt{n}}
$$

[^0]
ES Mutation:

 Strategy Parameters$\bigoplus \quad$ equal probability to place an offspring

- One parameter for each individual
- 2 dimensional genotype
$\vec{h}=\left(x_{1}, x_{2}, \sigma\right)$
- 5 individuals

ES Mutation:

Strategy Parameters

\bigoplus equal probability to place an offspring

- One parameter for each dimension
- 2 dimensional genotype
$\vec{h}=\left(x_{1}, x_{2}, \sigma_{1}, \sigma_{2}\right)$
- 5 individuals

ES Mutation:

Strategy Parameters

- Mutation of all strategy parameters

$$
\begin{aligned}
\sigma_{i}^{\prime} & =\sigma_{i} \cdot \exp \left(\tau^{\prime} \cdot N(0,1)+\tau \cdot N_{i}(0,1)\right) \\
x_{i}^{\prime} & =x_{i}+\sigma_{i}^{\prime} \cdot N_{i}(0,1)
\end{aligned}
$$

Sample from normal distribution, the same for all parameters

Update for this specific parameter

ES Mutation:

Strategy Parameters

\bigoplus equal probability to place an offspring

- An individual is a vector

$$
\vec{h}=\left(x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, \sigma_{n}, \alpha_{1}, \ldots, \alpha_{m}\right)
$$

where α_{i} encode angles

- Also here mutation can be defined
- Mathematical details skipped

ES Crossover/

Recombination

- Application of operator creates one child (not two)
- Is applied λ times to create an offspring population of size λ (on which then mutation and selection is applied)
- Per offspring gene two parent genes are involved
- Choices:
- combination of two parent genes:
- average value of parents (intermediate recombination)
- value of one randomly selected parent (discrete recombination)
- choice of parents:
- a different pair of parents for each gene (global recombination)
- the same pair of parents for all genes

ES Crossover/ Recombination

- Default choice: discrete recombination on phenotype, intermediate recombination on strategy parameters

1.2	0.2	-6.7	2.3	0.55	0.905	1.65	11.2
Offspring							
intermediate							

GAs vs. ES

Genetic algorithms

- Crossover is the main operator
- Uses also mutation
- Encoding for problem representation
- Biased selection of the parents
- Algorithm parameters often fixed
- Selection \rightarrow Crossover \rightarrow Mutation

Evolution strategies

- Mutation is the main operator
- Uses also crossover (recombination)
- No encoding needed for problem representation
- Random selection of the parents
- Adaptive set of algorithm parameters (strategy parameters)
- Crossover \rightarrow Mutation \rightarrow Selection

Genetic Programming

- Goal: to learn computer programs from examples (like in machine learning and data mining)
- Main idea: represent (simple) computer programs in individuals of arbitrary size
- Redefinitions of
- selection
- crossover
- mutation

Individuals are Program Trees / Parse Trees

- Representation of
- Arithmetic formulas

$$
2 \cdot \pi+\left((x+3)-\frac{y}{5+1}\right)
$$

- Logical formulas
$(x \wedge$ true $) \rightarrow((x \vee y) \vee(z \leftrightarrow(x \wedge y)))$
- Computer programs

$$
\begin{aligned}
& \begin{array}{l}
i=1 ; \\
\text { while }(i<20) \\
\{ \\
\{
\end{array} \quad i=i+1
\end{aligned}
$$

Representation of Arithmetic Formula

Representation of Logical Formula

Representation of

 Computer Programs

Representation

- Trees consisting of:
- terminals (leaves)
- constants
- variables (inputs to the program/formula)
- functions of fixed arity (internal nodes)

Considerations in

 Function Selection- Closure: any function should be well-defined for all arguments

Example: $\{$ *, / \} is not closed as division is not well defined if the second argument is o \rightarrow redefine /.

- Sufficiency: the function and terminal set should be able to represent a desirable solution

Evolutionary Cycle

- Fixed population size
- Create a new population by randomly selecting an operation to apply, each of which adds one or two individuals into the new population, starting from one or two fitness proportionally selected individuals:
- reproduction (copying)
- one of many crossover operations
- one of many mutation operations

Initialization

- Given is a maximum depth on trees $D_{\text {max }}$
- Full method:
- for each level $<D_{\text {max }}$ insert a node with function symbol (recursively add children of appropriate types)
- for level $D_{\text {max }}$ insert a node with a terminal
- Grow method:
- for each level $<D_{\text {max }}$ insert a node with either a terminal or a function symbol (and recursively add children of appropriate types to these nodes)
- for level $D_{\text {mx }}$ insert a node with a terminal
- Combined method: half of the population full, the other grown

Mutation

Operator name	Description
Point mutation	single node exchanged against random node of same class
Permutation	arguments of a node permuted
Hoist	new individual generated from subtree
Expansion	terminal exchanged against random subtree
Collapse subtree	subtree exchanged against random terminal
Subtree mutation	subtree exchanged against random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree Mutation

Subtree Mutation

Crossover

$(/(-(\operatorname{sqrt}(+(* a a)(-a b))) a)(* a b))$
$(+(-(\operatorname{sqrt}(-(* b b) a)) b)(\operatorname{sqrt}(/ a b)))$

Self-Crossover

Bloat

- "Survival of the fattest", i.e. the tree sizes in the populations increase over time
- Countermeasures:
- simplification
- penalty for large trees
- hard constraints on the size of trees resulting from operations

Editing Operator

- An operation that simplifies expressions
- Examples:
- X AND X $\rightarrow \mathrm{X}$
- X OR X \rightarrow X
- $\operatorname{NOT(NOT(X))~} \rightarrow \mathrm{X}$
- $\mathrm{X}+\mathrm{o} \rightarrow \mathrm{X}$
- X. $1 \rightarrow \mathrm{X}$
- X. o \rightarrow o
-

Example - symbolic

Regression

Pythagorean Theorem ${ }_{\substack{\text { Not (necessarily) } \\ \text { linear }}}^{\text {Prent }}$ linear

Underlying function: $c=\sqrt{a^{2}+b^{2}}$
Negnevitsky 2004

Fitness cases:

Side a	Side b	Hypotenuse c	Side a	Side b	Hypotenuse c
3	5	5.830952	12	10	15.620499
8	14	16.124515	21	6	21.840330
18	2	18.110770	7	4	8.062258
32	11	33.837849	16	24	28.844410
4	3	5.000000	2	9	9.219545

Language elements: $+,-,{ }^{*}, /$, sqrt, a, b

Results

Example - Symbolic Regression Approximation of $\sin (x)$

- Given examples $(x, \sin (x))$ with x in $\{0,1, \ldots, 9\}$
- Find a good approximation of $\sin (x)$

Function Sets	Result	Generation	Error (final)
$F_{1}:\{+,-, *, /, \sin \}$	$\sin (x)$	0	0.00
$F_{2}:\{+,-, *, /, \cos \}$	$\cos (x+4.66)$	12	0.40
$F_{3}:\{+,-, *, /\}$	$-0.32 x^{2}+x$	29	1.36

Example - Symbolic Regression Approximation of $\sin (x)$

Genetic algorithms

- Chromosomes represent coded solutions
- Fixed length chromosomes
- A small set of welldefined genetic
operators
- Conceptually simple

Genetic programming

- Chromosomes represent executable code
- Variable length chromosomes
- More complex genetic operators required
- Conceptually complex

[^0]: *H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

