
Evolutionary algorithms

• Simple genetic algorithms 

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck



Gray Coding

Aim: binary coding of integers such that integers 
x and y for which |x-y|=1 only differ in one bit

Dec  Gray   Binary
 0   000    000
 1   001    001
 2   011    010
 3   010    011
 4   110    100
 5   111    101
 6   101    110
 7   100    111



Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0  1 

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

   10 11 01 00
Codes hence:
000001 011 010 110 111 101 100
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Gray Coding
Given a “normal” bit representation, how to calculate 

the Gray code?
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A bit flips in the Gray code  iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num



Gray Coding
Given a Gray code, how to calculate a “normal” bit 

representation?
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A bit flips in the “normal” code (as compared to the Gray code)  iff the bit 
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Gray coding does not avoid that integers far away 

from each other can have similar codes 
00000=0 
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a one-
bit mutation to transform integer x into integer x+1 or 
x-1.



Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a 
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)



Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)



Evolutionary Strategies
Main idea: 

individuals consist of vectors of real numbers
(not binary)

Redefinitions of
selection
crossover 
mutation

Operations executed in the order 
crossover  mutation  selection→ →



ES: Selection
Not performed before mutation and crossover, but 

after these operations
It is assumed mutation (& crossover) generate 

λ > µ individuals (where µ is population size)
(typically λ ≈ 7µ)

Deterministically eliminate worst individuals from
children only: (µ,λ)-ES  escapes from local →

optima more easily
parents and children: (µ+λ)-ES  doesn't forget →

good solutions (“elitist selection”)

(Notational convention)



ES: Basic Mutation
An individual is a vector 

Mutate each xi by sampling a change from a normal 
distribution:
                               where

“sampled from”

Simple modification: 
mutation rate for each xi

Major question:
How to set     or      ?



ES: Basic Mutation
An algorithm for setting global     : 

 Count the number Gs of successful 
mutations
 Compute the ratio of successful mutations

ps = Gs / G

 Update strategy parameters according to

until termination 

σ i={
σ i/ c if ps> 0 .2

σ i c if ps< 0 .2

σ i if ps=0 .2

]0.1,8.0[∈c

Improved fitness

“1/5 rule”

MAIN IDEA: make search more efficient
by increasing mutation rate if this seems safe

Increase mutation
rate as it appears better 
solutions are far away



Basic (1+1) ES
Common use of the 1/5 rule



ES Mutation: 
Strategy Parameters
An individual is a vector

or 
where the       are the standard deviations

Mutate strategy parameter(s) first
Order is important!

If the resulting child has high fitness, it is assumed 
that:
quality of phenotype is good
quality of strategy parameters that led to this 

phenotype is good



ES Mutation: 
Strategy Parameters
Mutation of one strategy parameter



ES Mutation:
Strategy Parameters
Here       is the mutation rate

     bigger: faster but more imprecise
     smaller: slower but more imprecise

Recommendation for setting      : 



ES Mutation: 
Strategy Parameters

One parameter for each 
individual

2 dimensional genotype

5 individuals 

Line indicates points with equal fitness



ES Mutation:
Strategy Parameters

One parameter for each 
dimension

2 dimensional genotype

5 individuals 



ES Mutation: 
Strategy Parameters
Mutation of all strategy parameters

Sample from normal distribution, 
the same for all parameters

Update for this specific parameter



ES Mutation:
Strategy Parameters

An individual is a vector

where       encode angles

Also here mutation can 
be defined

Mathematical details 
skipped



ES Crossover / 
Recombination
Application of operator creates one child (not two)
Is applied       times to create an offspring population of size      

  (on which then mutation and selection is applied)
Per offspring gene two parent genes are involved
Choices:

combination of  two parent genes: 
 average value of parents (intermediate recombination)
 value of one randomly selected parent (discrete recombination)

choice of parents:
 a different pair of parents for each gene (global recombination) 
 the same pair of parents for all genes



ES Crossover / 
Recombination
Default choice: discrete recombination on phenotype,

intermediate recombination on strategy parameters



GAs vs. ES
Genetic algorithms
Crossover is the main 

operator
Uses also mutation

Encoding for problem 
representation

Biased selection of the 
parents

Algorithm parameters 
often fixed

Selection  Crossover  → →
Mutation

Evolution strategies
Mutation is the main 

operator
Uses also crossover 

(recombination)
No encoding needed for 

problem representation
Random selection of the 

parents
Adaptive set of algorithm 

parameters (strategy 
parameters)

Crossover  Mutation  → →
Selection



Genetic Programming
Goal: to learn computer programs from examples (like in 

machine learning and data mining)

Main idea: 
represent (simple) computer programs in individuals of 
arbitrary size

Redefinitions of
selection
crossover 
mutation



Individuals are Program 
Trees / Parse Trees
Representation of

Arithmetic formulas

Logical formulas

Computer programs



Representation of 
Arithmetic Formula



Representation of
Logical Formula 



Representation of
Computer Programs



Representation
Trees consisting of:

terminals (leaves)
 constants
 variables (inputs to the program/formula)

functions of fixed arity (internal nodes)



Considerations in 
Function Selection
Closure: any function should be well-defined for all 

arguments 

Example: { *, / } is not closed as division is not well 
defined if the second argument is 0  redefine /.→

Sufficiency: the function and terminal set should be 
able to represent a desirable solution



Evolutionary Cycle
Fixed population size
Create a new population by randomly selecting an 

operation to apply, each of which adds one or two 
individuals into the new population, starting from 
one or two fitness proportionally selected individuals:
reproduction (copying)
one of many crossover operations
one of many mutation operations



Initialization
Given is a maximum depth on trees Dmax

Full method:
 for each level < Dmax insert a node with function symbol

(recursively add children of appropriate types)
 for level Dmax insert a node with a terminal

Grow method:
 for each level < Dmax insert a node with either a terminal or a 

function symbol (and recursively add children of appropriate types 
to these nodes)

 for level Dmax insert a node with a terminal

Combined method: half of the population full, the other grown



Mutation
Operator name Description

Point mutation single node exchanged against random node 
of same class

Permutation arguments of a node permuted

Hoist new individual generated from subtree

Expansion terminal exchanged against random subtree

Collapse subtree subtree exchanged against random terminal

Subtree mutation subtree exchanged against random subtree



Point Mutation



Permutation



Hoist



Expansion Mutation



Collapse Subtree 
Mutation



Subtree Mutation



Crossover



Self-Crossover



Bloat
“Survival of the fattest”, i.e. the tree sizes in the 

populations increase over time

Countermeasures:
simplification
penalty for large trees
hard constraints on the size of trees resulting from 

operations 



Editing Operator
An operation that simplifies expressions
Examples:

X AND X  X→
X OR X  X→
NOT(NOT(X))  X→
X + 0  X→
X . 1  X→
X . 0  0→
….



Example – Symbolic 
Regression
Pythagorean Theorem

22 bac +=
Negnevitsky 2004

Underlying function:

Fitness cases:

Language elements: +, -, *, /, sqrt, a, b

Not (necessarily)
linear





Example – Symbolic Regression
Approximation of sin(x)
Given examples (x,sin(x)) with x in {0,1,...,9}
Find a good approximation of sin(x)



Example – Symbolic Regression
Approximation of sin(x)



GAs vs. GP
Genetic algorithms
Chromosomes represent 

coded solutions
Fixed length 

chromosomes
A small set of well-

defined genetic 
operators

Conceptually simple

Genetic programming
Chromosomes represent 

executable code
Variable length 

chromosomes
More complex genetic 

operators required
Conceptually complex
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