Evolutionary algorithms

- Simple genetic algorithms
- Evolutionary Strategies
- Genetic Programming

Partially based on slides by Thomas Bäck

Aim: binary coding of integers such that integers x and y for which |x-y|=1 only differ in one bit

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

- Codes for *n*=1: (i.e., integers 0, 1)
 0
- Codes for n=2: (i.e., integers 0, 1, 2, 3) Reflected entries for n=0:

1 0 Prefix old entries with o:

<u>0</u>0 <u>0</u>1

Prefix reflected entries with 1:

 $\begin{array}{c} \underline{11} \quad \underline{10} \\ \text{Codes hence:} \end{array}$

<u>00 01 11 1</u>0

Codes for n=3: (i.e., integers 0, 1, 2, ..., 7) Reflected entries for n=2:

10110100Codes hence:101111101100000 001011010110111101100

 Given a "normal" bit representation, how to calculate the Gray code?

bitstring \rightarrow Gray $10100 \rightarrow 11110$ $10101 \rightarrow 11111$ $10110 \rightarrow 11101$ $11001 \rightarrow 10101$

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

Source code in Python for calculating Gray code:

def binaryToGray(num):
 return (num >> 1) ^ num

Given a Gray code, how to calculate a "normal" bit representation?

bitstring \rightarrow Gray $10100 \rightarrow 11110$ $10101 \rightarrow 11111$ $10110 \rightarrow 11101$ $11001 \rightarrow 10101$

A bit flips in the "normal" code (as compared to the Gray code) iff the bit before it has value 1 in the "normal" code.

 Gray coding does not avoid that integers far away from each other can have similar codes

00000=0

- 10000=31
- → Mutation can still change numbers a lot
- Gray coding only ensures that there always is a onebit mutation to transform integer x into integer x+1 or x-1.

Constraints

• Examples:

- "A string of numbers should represent a permutation" (1,2,3) is valid; (1,1,3) is not
- "The sum of numbers should not be lower than a threshold"

Possibility 1: fitness function modification

- setting fitness of unfeasible solutions to zero (search may be very inefficient due to unfeasible solutions)
- penalty function (negative terms for violated constraints)
- barrier function (already penalty if "close to" violation)

Constraints

Possibility 2 (preferred method): special encoding

- GA searches always through allowed solutions
- smaller search space
- ad hoc method, may be difficult to find
- Example: permutations (see AI course)

Evolutionary Strategies

Main idea: individuals consist of vectors of real numbers (not binary)

- Redefinitions of
 - selection
 - crossover
 - mutation
- Operations executed in the order crossover → mutation → selection

ES: Selection

- Not performed *before* mutation and crossover, but <u>after</u> these operations
- It is assumed mutation (& crossover) generate $\lambda > \mu$ individuals (where μ is population size) (typically $\lambda \approx 7\mu$)
- Deterministically eliminate worst individuals from
 - children only: (μ, λ) -ES \rightarrow escapes from local optima more easily (Notational convention)
 - parents and children: $(\mu + \lambda)$ -ES \rightarrow doesn't forget good solutions ("elitist selection")

ES: Basic Mutation

• An individual is a vector $\vec{h} = (x_1, \dots, x_n)$

Mutate each x_i by sampling a change from a normal distribution:

$$x_i \leftarrow x_i + \Delta x_i$$
 where $\Delta x_i \simeq N(0, \sigma)$
"sampled from"

Simple modification: mutation rate for each x_i

Major question: How to set σ or σ_i ?

MAIN IDEA: make search more efficient by increasing mutation rate if this seems safe

ES: Basic Mutation

- An algorithm for setting global σ : Count the number G_s of successful
 - mutations
 - Compute the ratio of successful mutations $p_s = G_s / G$
 - Update strategy parameters according to

 $\sigma_{i} = \begin{cases} \sigma_{i}/c & \text{if } p_{s} > 0.2 \\ \sigma_{i}c & \text{if } p_{s} < 0.2 \\ \sigma_{i} & \text{if } p_{s} = 0.2 \end{cases} \begin{array}{c} c \in [0.8, 1.0] \\ \text{Increase mutation} \\ \text{rate as it appears bett} \end{cases}$ $c \in [0.8, 1.0]$ rate as it appears better solutions are far away "1/5 rule"

until termination

Basic (1+1) ES

Common use of the 1/5 rule

t := 0;initialize $P(0) := \{\vec{x}(0)\} \in I, I = IR^n, \vec{x} = (x_1, \dots, x_n);$ *evaluate* P(0) : { $f(\vec{x}(0))$ } while not terminate(P(t)) do mutate: $\vec{x}'(t) := m(\vec{x}(t))$ where $x'_i := x_i + \sigma(t) \cdot N_i(0, 1) \ \forall i \in \{1, ..., n\}$ evaluate: $P'(t) := \{\vec{x}'(t)\} : \{f(\vec{x}'(t))\}$ select: $P(t+1) := s_{(1+1)}(P(t) \cup P'(t));$ t := t + 1: if $(t \mod n = 0)$ then $\sigma(t) := \left\{ egin{array}{ll} \sigma(t-n)/c & , \ {
m if} \ p_s > 1/5 \ \sigma(t-n) \cdot c & , \ {
m if} \ p_s < 1/5 \ \sigma(t-n) & , \ {
m if} \ p_s = 1/5 \end{array}
ight.$ where p_s is the relative frequency of successful mutations, measured over intervals of, say, $10 \cdot n$ trials; 0.817 < c < 1;and else $\sigma(t) := \sigma(t-1);$ fi od

- An individual is a vector $\vec{h} = (x_1, \dots, x_n, \sigma)$ or $\vec{h} = (x_1, \dots, x_n, \sigma_1, \dots, \sigma_n)$ where the σ_i are the standard deviations
- Mutate strategy parameter(s) first Order is important!
- If the resulting child has high fitness, it is assumed that:
 - quality of phenotype is good
 - quality of strategy parameters that led to this phenotype is good

Mutation of one strategy parameter

ES Mutation:

Strategy Parameters

• Here au_0 is the mutation rate

- au_0 bigger: faster but more imprecise
- τ_0 smaller: slower but more imprecise
- Recommendation for setting au_0 :

$$\tau_0 = \frac{1}{\sqrt{n}}$$

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

 \oplus

equal probability to place an offspring

- One parameter for each individual
- 2 dimensional genotype

$$\vec{h} = (x_1, x_2, \sigma)$$

5 individuals

Line indicates points with equal fitness

equal probability to place an offspring

- One parameter for each dimension
- 2 dimensional genotype

$$\vec{h} = (x_1, x_2, \sigma_1, \sigma_2)$$

5 individuals

Mutation of all strategy parameters

$$\sigma'_i = \sigma_i \cdot \exp(\tau' \cdot N(0, 1) + \tau \cdot N_i(0, 1))$$

$$x'_i = x_i + \sigma'_i \cdot N_i(0, 1)$$

Sample from normal distribution, the same for all parameters

Update for this specific parameter

 \oplus

equal probability to place an offspring

• An individual is a vector $\vec{h} = (x_1, \dots, x_n, \sigma_1, \dots, \sigma_n, \alpha_1, \dots, \alpha_m)$

where α_i encode angles

 Also here mutation can be defined

 Mathematical details skipped

ES Crossover / Recombination

- Application of operator creates one child (not two)
- \bullet Is applied $~\lambda$ times to create an offspring population of size $~\lambda$ (on which then mutation and selection is applied)
- Per offspring gene two parent genes are involved
- Choices:
 - combination of two parent genes:
 - average value of parents (intermediate recombination)
 - value of one randomly selected parent (*discrete recombination*)
 - choice of parents:
 - a different pair of parents for each gene (*global recombination*)
 - the same pair of parents for all genes

ES Crossover / Recombination

 Default choice: discrete recombination on phenotype, intermediate recombination on strategy parameters

GAs vs. ES

Genetic algorithms

- Crossover is the main operator
- Uses also mutation
- Encoding for problem representation
- Biased selection of the parents
- Algorithm parameters often fixed
- Selection → Crossover → Mutation

Evolution strategies

- Mutation is the main operator
- Uses also crossover (recombination)
- No encoding needed for problem representation
- Random selection of the parents
- Adaptive set of algorithm parameters (strategy parameters)
- Crossover → Mutation →
 Selection

Genetic Programming

- Goal: to learn computer programs from examples (like in machine learning and data mining)
- Main idea: represent (simple) computer programs in individuals of arbitrary size
- Redefinitions of
 - selection
 - crossover
 - mutation

Individuals are Program Trees / Parse Trees

- Representation of
 - Arithmetic formulas

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Logical formulas

$$(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$$

Computer programs

Representation of Arithmetic Formula

Representation of Logical Formula

Representation of Computer Programs

Representation

- Trees consisting of:
 - terminals (leaves)
 - constants
 - variables (inputs to the program/formula)
 - functions of fixed arity (internal nodes)

Considerations in Function Selection

Closure: any function should be well-defined for all arguments

Example: { *, / } is not closed as division is not well defined if the second argument is $o \rightarrow$ redefine /.

 Sufficiency: the function and terminal set should be able to represent a desirable solution

Evolutionary Cycle

- Fixed population size
- Create a new population by randomly selecting an operation to apply, each of which adds one or two individuals into the new population, starting from one or two fitness proportionally selected individuals:
 - reproduction (copying)
 - one of many crossover operations
 - one of many mutation operations

Initialization

- Given is a maximum depth on trees D_{max}
- Full method:
 - for each level < D_{max} insert a node with function symbol (recursively add children of appropriate types)
 - for level D_{max} insert a node with a terminal
- Grow method:
 - for each level < D_{max} insert a node with either a terminal or a function symbol (and recursively add children of appropriate types to these nodes)
 - for level D_{max} insert a node with a terminal
- Combined method: half of the population full, the other grown

Mutation

Operator name	Description
Point mutation	single node exchanged against random node of same class
Permutation	arguments of a node permuted
Hoist	new individual generated from subtree
Expansion	terminal exchanged against random subtree
Collapse subtree	subtree exchanged against random terminal
Subtree mutation	subtree exchanged against random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree Mutation

Subtree Mutation

Crossover

Self-Crossover

Bloat

- "Survival of the fattest", i.e. the tree sizes in the populations increase over time
- Countermeasures:
 - simplification
 - penalty for large trees
 - hard constraints on the size of trees resulting from operations

Editing Operator

- An operation that simplifies expressions
- Examples:
 - $X AND X \rightarrow X$
 - $X \text{ OR } X \rightarrow X$
 - NOT(NOT(X)) \rightarrow X
 - $X + o \rightarrow X$
 - X . 1 \rightarrow X
 - X . $o \rightarrow o$

Example – <u>Symbolic</u>

Regression Pythagorean Theorem Not (necessarily) linear

Negnevitsky 2004

Underlying function: $c = \sqrt{a^2 + b^2}$

Fitness cases:

	Side <i>a</i>	Side b	Hypotenuse c	Side <i>a</i>	Side b	Hypotenuse c			
2555555	3	5	5.830952	12	10	15.620499			
	8	14	16.124515	21	6	21.840330			
1055555	18	2	18.110770	7	4	8.062258			
8555555	32	11	33.837849	16	24	28.844410			
2555555	4	3	5.000000	2	9	9.219545			

Language elements: +, -, *, /, sqrt, a, b

Results

Example – Symbolic Regression Approximation of sin(x)

- **Given** examples (x,sin(x)) with x in {0,1,...,9}
- Find a good approximation of sin(x)

Function Sets	Result	Generation	Error (final)
<i>F</i> ₁ : { +, -, *, /, sin }	sin(x)	0	0.00
$F_2: \{ +, -, *, /, \cos \}$	cos(x + 4.66)	12	0.40
<i>F</i> ₃ : { +, -, *, / }	$-0.32 x^2 + x$	29	1.36

Example – Symbolic Regression Approximation of sin(x)

GAs vs. GP

Genetic algorithms

- Chromosomes represent coded solutions
- Fixed length chromosomes
- A small set of welldefined genetic operators
- Conceptually simple

Genetic programming

- Chromosomes represent executable code
- Variable length chromosomes
- More complex genetic operators required
- Conceptually complex